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The results of our study of the motion of a three particle, self-gravitating system in general relativistic lineal
gravity is presented for an arbitrary ratio of the particle masses. We derive a canonical expression for the
Hamiltonian of the system and discuss the numerical solution of the resulting equations of motion. This
solution is compared to the corresponding nonrelativistic and post-Newtonian approximation solutions so that
the dynamics of the fully relativistic system can be interpreted as a correction to the one-dimensional New-
tonian self-gravitating system. We find that the structure of the phase space of each of these systems yields a
large variety of interesting dynamics that can be divided into three distinct regions: annulus, pretzel, and
chaotic; the first two being regions of quasiperiodicity while the latter is a region of chaos. By changing the
relative masses of the three particles we find that the relative sizes of these three phase space regions changes,
and that this deformation can be interpreted physically in terms of the gravitational interactions of the particles.
Furthermore, we find that many of the interesting characteristics found in the case where all of the particles
share the same mass also appear in our more general study. We find that there are additional regions of chaos
in the unequal mass system which are not present in the equal mass case. We compare these results to those
found in similar systems.
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I. INTRODUCTION

The calculation of the motion ofN particles under a speci-
fied, mutual force is one of the oldest problems in physics,
commonly referred to as theN-body problem. This problem
occurs frequently in many distinct subfields and remains an
active area of research. When the specified force is that of
Newtonian gravity in three spatial dimensions, a closed form
solution of the motion can be obtained forN=2. This is not
true for s3+1d-dimensional general relativistic gravity, how-
ever, due to the existence of energy dissipation in the form of
gravitational radiation. All attempts to calculate the motion
of more than one particle ins3+1d general relativity have
required some form of approximation.

Considerable progress in this area of research has been
made recently by reducing the number of spatial dimensions
from three to one. These lower-dimensional theories provide
a simpler prototype for their higher-dimensional counter-
parts. Furthermore, for Newtonian gravity, one-dimensional
self-gravitating systems(OGS’s) have proven to be very use-
ful in modeling many diverse physical systems. For example,
it has been found that there exist stable core-halo structures
in the OGS phase space that are reminiscent of those found
in globular clusters[1]. These structures consist of a dense
core of particles near equilibrium surrounded by a cloud of
high kinetic energy particles that interact very weakly with
the core. The OGS also models the dynamics of flat, parallel
sheets colliding along a perpendicular axis[2] and the mo-
tion of stars interacting with a highly flattened galaxy[3].
More specifically, the three-particle OGS has been found to

model the motion of a billiard colliding with a wedge in a
uniform gravitational field[2] two elastically colliding bil-
liard balls in a uniform gravitational field[4], and a bound
state of three quarks to form a “linear baryon”[5]. There are
still many open questions about the OGS concerning its er-
godic behavior, the conditions(if any) under which equipar-
tition of energy is attained, whether or not it can reach a true
equilibrium configuration from arbitrary initial conditions,
and the appearance of fractal behavior[6].

In a relativistic context, reduction of the number of spatial
dimensions results in an absence of gravitational radiation
while retaining most(if not all) of the remaining conceptual
features of relativistic gravity. Consequently, one might hope
to obtain insight into the nature of relativistic dynamical
gravitational systems at the classical(and perhaps even quan-
tum) level in a wide variety of physical situations by study-
ing the relativistic OGS, or ROGS.

Comparatively little has been known about the ROGS
(even forN=2) until quite recently, when a prescription for
obtaining its Hamiltonian from a generally covariant, mini-
mally coupled action was obtained[7]. In the nonrelativistic
limit sc→`d, the Hamiltonian reduces to that of the OGS.
This opened up the possibility of extending the insights of
the OGS into the relativistic regime, and indeed, consider-
able progress has been made. Exact, closed-form solutions to
the two-body problem have been obtained[8]. These have
been extended to include both a cosmological constant[9,10]
and electromagnetic interactions[11], and a new exact solu-
tion to the static-balance problem has been obtained[12]. In
theN-body case, the Hamiltonian can be obtained as a series
expansion in inverse powers of the speed of lightc to arbi-
trary order and a complete derivation of the partition and
single-particle distribution functions has been found in both
the canonical and microcanonical ensembles[13] providing
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interesting information concerning the influence of relativis-
tic effects on self-gravitating systems. Very recently, formu-
lation of the ROGS has been extended to circular topologies
[14] (forbidden for the OGS), and a newN-body dynamical
equilibrium solution has been found[15]. An exact expres-
sion for the relativistic, three-body Hamiltonian has been cal-
culated and the motion of three equal-mass particles has been
extensively studied[16,17]; these results are summarized in
Sec. V A.

In this paper, we will generalize the study of the motion of
three particles to include the unequal mass case. We work
with a two-dimensional(2D) theory of gravity on a line(lin-
eal gravity) that models 4D general relativity in that it sets
the Ricci scalarR equal to the trace of the stress energy of
prescribed matter fields and sources. Hence, as ins3+1d di-
mensions, the evolution of space-time curvature is governed
by the matter distribution, which in turn is governed by the
dynamics of space-time[18]. Sometimes referred to asR
=T theory, it is a particular member of a broad class of dila-
ton gravity theories formulated on a line. What singles it out
for consideration is its consistent nonrelativistic(i.e., c→`)
limit [18] which is, in general, a problematic limit for a
generic s1+1d-dimensional theory of gravity[19]. Conse-
quently it contains each of the aforementioned nonrelativistic
self-gravitating systems as special cases. Furthermore, it re-
duces to Jackiw-Teitelboim(JT) theory [20] when the stress
energy is that of a cosmological constant.

We have found that the best way to study the motion of
three particles is to work in the canonical formalism. By
expressing the action in canonical variables we are able to
determine the Hamiltonian as a spatial integral of the second
derivative of the dilaton field. This field is determined by the
constraint equations derived from the action which can be
solved by matching the solution of the field across each of
the three particles. The result is a transcendental equation
containing the Hamiltonian and expressed in terms of the
remaining degrees of freedom, that is, the two mutual sepa-
rations of the particles and their conjugate momenta. From
this transcendental equation we obtain the canonical equa-
tions of motion, which are then solved numerically.

Through a change of coordinates, the Newtonian, three-
particle OGS can be shown to be isomorphic to the motion of
a single particle in a linear, hexagonal well potential. By
applying this same change of variables to the three-particle
ROGS we find an analogous hexagonal potential where the
sides of the hexagonal cross section are curved outwards and
the sides of the well no longer increase linearly with increas-
ing particle separation. We find that, by changing the relative
masses of the particles, the shape of the hexagonal cross
section in both the Newtonian and relativistic systems is ex-
panded or contracted perpendicular to one of the lines con-
necting opposite vertices. This change of variables simplifies
the analysis of the motion significantly and is used through-
out to extract useful information from both the three-particle
OGS and ROGS.

As in Ref.[17] we consider three distinct three-body, self-
gravitating systems: the nonrelativistic case(N) which has
been extensively studied in many different contexts

[2,4,5,21],1 the fully relativistic case(R) described above,
and a post-Newtonian expansion(pN) of the R system, trun-
cated to leading order inc−2. While exact relativistic solu-
tions of theN-body problem have only been found forN
=2,3, thepost-Newtonian expansion has been found for all
finite values ofN up to any order of accuracy[7]. Both the R
and pN systems reduce to the N system in the limitc→`.

In Sec. II we outline the canonical reduction procedure of
Ref. [17] that leads to the relativistic Hamiltonian expression
and the resulting canonical equations of motion. Some gen-
eral properties of each of the systems are then discussed in
Sec. III, focussing on the character of the associated potential
energy functions of each. The method for numerically solv-
ing the equations of motion is described in section IV and the
results of this numerical solution presented in Sec. V. These
results are then summarized and discussed in Sec. VI, which
concludes with a comment on areas of further research
interest.

II. HAMILTONIAN FORMULATION OF THE
RELATIVISTIC EQUATIONS OF MOTION

The general procedure for deriving theN-body Hamil-
tonian via canonical reduction is given in Refs.[8,10,17] and
only a brief description will be given here.

The action for the gravitational field minimally coupled to
N point particles ins1+1d dimensions is given by

I =E d2xF 1

2k
Î− ggmnHCRmn +

1

2
=mC=nCJ

+ o
a=1

N E dtaH− maS− gmnsxd
dza

m

dta

dza
n

dta
D2Jds2dfx − zastadgG ,

s1d

wheregmn is the metric tensor with determinantg, Rmn is the
Ricci tensor,ta the proper time for theath particle with mass
ma and positionza, andk=8pG/c4. We use=m to denote the
covariant derivative associated withgmn. The scalar(dilaton)
field C has been incorporated because the classical Einstein-
Hilbert action ins1+1d dimensions is trivial due to the van-
ishing of the Einstein tensor. This action describes a self-
gravitating system ofN particles without collisional terms
(i.e., the particles pass through each other).

From Eq.(1) one can derive the following field equations:

R− gmn=m=nC = 0, s2d

1These studies examine the three-body problem in a classical po-
tential obtained by solving Poisson’s equation in one spatial dimen-
sion. The potential linearly depends on the separation of the par-
ticles as seen in Eq.(20). The chaotic properties of the one-
dimensional three-body problem with a potential that depends
inversely on the separation(as in three dimensions) have been stud-
ied in Ref.[22].
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1
2=mC=nC − 1

4gmn=lC=lC + gmn=l=lC − =m=nC = kTmn,

s3d

maF d

dta
Hgmnszad

dza
n

dta
J −

1

2
gnl,mszad

dza
n

dta

dza
l

dta
G = 0, s4d

where

Tmn = o
a

maE dta
1

Î− g
gmsgnr

dza
s

dta

dza
r

dta
ds2dfx − zastadg

s5d

is the stress-energy tensor for theN particles and is con-
served via Eq.(3). Inserting the trace of Eq.(3) into Eq. (2)
we obtain

R= kTm
m. s6d

The fact that we retain this simple relation between the ge-
ometry of space-time and the matter, analogous to the Ein-
stein field equations, is the motivation for choosing the dila-
ton coupling in Eq.(1).

Equations(4) and(6) form ansN+1d-dimensional system
that can be solved for the single metric degree of freedom
and theN particle degrees of freedom. Equation(3) relates
the evolution of the dilaton field to the evolution of the point
masses.

To arrive at a Hamiltonian theory we begin by writing the
metric as

ds2 = − N0
2sx,tddt2 + gSdx+

N1sx,td
g

dtD2

, s7d

whereN0 andN1 are the lapse and shift functions which act
as Lagrange multipliers for the resulting constraints of the
Hamiltonian system andg is the single metric degree of
freedom.

By also definingpa, p, andP to be the conjugate momen-
tum of za, g, andC, respectively, one can canonically reduce
the action to the form[7]

I =E d2xHo
a

pażadsx − zad +
1

k
DCJ , s8d

upon eliminating the constraints and choosing the coordinate
conditionsg=1 andP=0. Here we useD to denote]2/]x2

and a dot to denote] /]t. With the action in this form, we
recognize the second termH=−1/kDC as the Hamiltonian
density and can immediately write down the Hamiltonian for
N particles as

H =E dxH = −
1

k
E dxDC, s9d

whereC is a function ofza and pa and can be determined
from the solution to the constraint equations which now take
the form

DC − 1
4sC8d2 + k2p2 + ko

a

Îpa
2 + ma

2dsx − zad = 0,

s10d

2p8 + o
a

padsx − zad = 0, s11d

where a prime denotes] /]x.
The solution of Eqs.(9)–(11) for the three-particle case is

given in Ref.[17] and will not be reproduced here in detail.
The basic procedure involves choosing a specific configura-
tion of the three particles and solving Eqs.(10) and (11) in
the region between each particle. The constants of integra-
tion are then determined by demanding thatC and C8 re-
main finite and coincide at the position of the particles. This
gives an implicit equation for the HamiltonianH for the
specified particle configuration and the Hamiltonian for a
general configuration is obtained by permutation of the par-
ticle indices(1, 2, and 3).

This implicit equation for the Hamiltonian can be ex-
pressed as

L1L2L3 = M12M21L3
*esk/4ds12fsL1+M12dz13−sL2+M21dz23g

+ M23M32L1
*esk/4ds23fsL2+M23dz21−sL3+M32dz31g

+ M31M13L2
*esk/4ds31fsL3+M31dz32−sL1+M13dz12g,

s12d

or more compactly

L1L2L3 =
1

2o
i jk

uei jkuMi jM jiLk
*esk/4dsij fsLi+Mi j dzik−sLj+M ji dzjkg,

s13d

where

Mi j = Mi − episij , Mi = Îpi
2 + mi

2, s14d

Li = H − Mi − eSo
j

pjsjiD, Li
* = S1 − p

j,kÞi

sijsikDMi + Li ,

s15d

with zij =szi −zjd, sij =sgnszijd, and ei jk is the three-
dimensional Levi-Civita tensor. The discrete parametere
= ±1 is a constant of integration that flips sign under time
reversal. This provides a measure of the flow of time of the
gravitational field relative to the particle momenta.

Although we cannot obtain an explicit expression for the
Hamiltonian, we are able to derive the equations of motion
explicitly by partially differentiating Eq.(13) implicitly with
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respect toza and pa and solving for]H /]za and ]H /]pa,
respectively. From Hamilton’s equations

ża =
] H

] pa
, s16d

ṗa = −
] H

] za
, s17d

we can obtain the equations of motion.
For example, fora=1, Eqs.(16) and (17) become

ż1HL2L3 + L1L3 + L1L2 − fM2 − ep2s21gfM1 − ep1s12gF1 +
k

4
L3

* uz12uGesk/4ds12fsL1+M12dz13−sL2+M21dz23g − fM3 − ep3s31gfM1 − ep1s13g

3F1 +
k

4
L2

* uz13uGesk/4ds31fsL3+M31dz32+sL1+M13dz12g − fM2 − ep2s23gfM3 − ep3s32gF1 +
k

4
L1

* uz23uGesk/4ds23fsL3+M32dz13−sL2+M23dz12gJ
=fM2 − ep2s21gFS ] M1

] p1
− es12DL3

* − sM1 − ep1s12dHes13 +
k

4
L3

*sez12dJGesk/4ds12fsL1+M12dz13−sL2+M21dz23g + fM3 − ep3s31gFS ] M1

] p1

− es13DL2
* − sM1 − ep1s13dHes12 +

k

4
L2

*sez13dJGesk/4ds13fsL1+M13dz12+sL3+M31dz23g + fM2 − ep2s23gfM3 − ep3s32gF− s12s13
] M1

] p1

+
k

4
s23L1

*feuz12u − euz13ugGesk/4ds23fsL3+M32dz13−sL2+M23dz12g+
] M1

] p1
L2L3 + ess12L1L3 + s13L2L1d, s18d

and

ṗ1HL2L3 + L1L3 + L1L2 − fM2 − ep2s21gfM1 − ep1s12gF1 +
k

4
L3

* uz12uGesk/4ds12fsL1+M12dz13−sL2+M21dz23g − fM3 − ep3s31gfM1 − ep1s13g

3F1 +
k

4
L2

* uz13uGesk/4ds13fsL1+M13dz12+sL3+M31dz23g − fM2 − ep2s23gfM3 − ep3s32gF1 +
k

4
L1

* uz23uG
3esk/4ds23fsL2+M23dz21−sL3+M32dz31gJ

=fM2 − ep2s21gfM1 − ep1s12gFk

4
s12L3

*fH + esp2 − p1ds12 + ep3s13gGesk/4ds12fsL1+M12dz13−sL2+M21dz23g

+ fM3 − ep3s31gfM1 − ep1s13gFk

4
s13L2

*fH + ep2s12 + esp3 − p1ds13gGesk/4ds13fsL1+M13dz12+sL3+M31dz23g

+ fM2 − ep2s23gfM3 − ep3s32gFk

4
s23L1

*p1ss12 − s13dGesk/4ds23fsL3+M32dz13−sL2+M23dz12g. s19d

The equations fora=2,3 aresimilar and will be omitted
here.

III. GENERAL PROPERTIES OF THE THREE-BODY
SYSTEM

Before we go on to solve the equations of motion, it is
instructive to consider some general characteristics of the
three-body system described by the determining Eq.(12) and
its associated nonrelativistic and post-Newtonian counter-
parts.

To compare the relativistic motion to that predicted clas-
sically, we introduce the NewtonianN particle Hamiltonian
in s1+1d dimensions

HN = o
a

pa
2

2ma
+ pGo

a
o
b

mambuzabu, s20d

where zab=za−zb as before. We shall refer to this as the
Newtonian or N system.
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A post-Newtonian approximation of the generalN-body
Hamiltonian has been found[7] and is given here up to order
c−2:

HpN = c2o
a

ma + o
a

pa
2

2ma
+

kc4

8 o
a

o
b

mambuzabu

+
ekc3

8 o
a

o
b

smapb − mbpadszabd − co
a

pa
4

8ma
3

+
kc2

8 o
a

o
b
Sma

pa
2

mb
uzabu − papbuzabuD

+
1

4
Sk

4
D2

c6o
a

o
b

o
c

mambmcsuzabuuzacu + zabzacd.

s21d

If we rescale(21) to remove the constantoa mac
2 term and

take the limitc→` then it is clear that we retrieve the New-
tonian result(20).

However, the coordinatesza andpa are not necessarily the
most natural coordinates to use to describe the post-
Newtonian system. The reason is that the fourth term on the
right hand side of Eq.(21) is proportional toc−1. In s3+1d
dimensions, terms in odd powers ofc−1 are associated with
gravitational radiation, but, ins1+1d dimensions, there are
not enough degrees of freedom to allow for the existence of
gravitational radiation, and such terms are artifacts of the
choice of canonical variables.

Indeed, as in Ref.[7], we can remove thec−1 term by
performing the canonical transformation

za → z̃a = za, s22d

pa → p̃a = pa −
ek

4 o
b

mambzab, s23d

after which, Eq.(21) becomes

H̃pN = c2o
a

ma + o
a

p̃2
a

2ma
+

kc4

8 o
a

o
b

mambuz̃abu − co
a

p̃4
a

8ma
3

+
kc2

8 o
a

o
b
Sma

p̃2
a

mb
uz̃abu − p̃ap̃buz̃abuD

+
1

4
Sk

4
D2

c6o
a

o
b

o
c

mambmcsuz̃abuuz̃acu − z̃abz̃acd, s24d

where z̃ab= z̃a− z̃b. Since Eq.(24) uses different coordinates
than Eqs.(20) and(12) it is important to distinguish between
the two expressions for the post-Newtonian Hamiltonian. We
will refer to the system described by Eq.(21) as the untrans-
formed post-Newtonian system, or UpN system, and the sys-
tem described by Eq.(24) simply as the post-Newtonian or
pN system. Note that only the pN system was studied in Ref.
[17]. To complete our nomenclature, the fully relativistic sys-
tem will be denoted as the R system. Unless otherwise
stated, the Newtonian system will be assumed to have been

rescaled so thatHszab=0,pa=0d=sm1+m2+m3dc2 in order to
properly compare it to the pN and R cases.

In order to simplify our analysis we will adopt the con-
vention of Refs.[5,17] and define the following canonical
coordinates:

r =
1
Î2

sz1 − z2d, l =
1
Î6

sz1 + z2 − 2z3d, Z = z1 + z2 + z3,

s25d

with conjugate momenta

pr =
1
Î2

sp1 − p2d, pl =
1
Î6

sp1 + p2 − 2p3d,

pZ = 1
3sp1 + p2 + p3d. s26d

In the nonrelativistic limit,Z andpZ are related to the center
of mass and its conjugate momentum. While the equivalence
principle does not allow us to arbitrarily setZ in the relativ-
istic case, we can, without loss of generality, choosepZ to
vanish. The consequence of this is that we can explicitly
expressp1, p2, andp3 in terms of the newly defined momenta
(26) but can only express theseparationsof the particleszab
explicitly in terms of the new coordinates(25). This gives us
the following relations:

z12 = Î2r, z13 =
1
Î2

sÎ3l + rd, z23 =
1
Î2

sÎ3l − rd,

s27d

p1 =
1
Î6

pl +
1
Î2

pr, p2 =
1
Î6

pl −
1
Î2

pr, p3 = −Î2

3
pl.

s28d

All of the Hamiltonian expressions(12), (20), (21), and
(24) do not depend onZ or pZ and so these variables are
irrelevant. Expressions for Eqs.(12), (20), and(24) in terms
of the new coordinates are given in Ref.[17] for the case
when m1=m2=m3. The corresponding expressions for un-
equal masses are very cumbersome and will not be repro-
duced here.

By defining the potential of each system asVsr ,ld
=Hspr=0,pl=0d we can compare some of the different
characteristics of the three systems. Inr-l coordinates theN
potential becomes

VN = m1 + m2 + m3 +
k

4Î2
s2m1m2uru + m1m3uÎ3l + ru

+ m2m3uÎ3l − rud, s29d

where we have rescaled the Hamiltonian as described above
(with c henceforth set to unity unless explicitly stated other-
wise). The UpN potential is given as
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VpN = m1 + m2 + m3 +
k

4Î2
s2m1m2uru + m1m3uÎ3l + ru

+ m2m3uÎ3l − rud +
1

2
Sk

4
D2

m1m2m3f4r2 + sÎ3l + rd2

+ sÎ3l − rd2 + s1 + srs1duruuÎ3l + rug

+
1

2
Sk

4
D2

m1m2m3fs1 − srs2duruuÎ3l − ru + 1
2s1 + s1s2d

3uÎ3l + ruuÎ3l − rug s30d

and the pN potential is

ṼpN = m1 + m2 + m3 +
k

4Î2
s2m1m2ur̃u + m1m3uÎ3l̃ + r̃u

+ m2m3uÎ3l̃ − r̃ud +
1

2
Sk

4
D2

m1m2m3Fs1 − s̃rs̃1d

3ur̃uuÎ3l̃ + r̃u + s1 + s̃rs̃2dur̃uuÎ3l̃ − r̃u +
1

2
s1 − s̃1s̃2d

3uÎ3l̃ + r̃uuÎ3l̃ − r̃uG , s31d

wherer̃ and l̃ are defined as in Eq.(25) using thez̃a coor-
dinates of Eq.(22). Here we have definedsr=sgnsrd, s1

=sgnsÎ3l+rd, ands2=sgnsÎ3l−rd and thes̃ terms are de-

fined similarly in terms ofr̃ and l̃. The exact relativistic
potential can be calculated from Eq.(12) to be

sVR − m1dsVR − m2dsVR − m3d

= m1m2sVR − s1s2m3d

3expF k

2Î2
VRuruG + m1m3sVR + srs2m2d

3expF k

4Î2
VRuÎ3l + ruG + m2m3sVR − srs1m1d

3expF k

4Î2
VRuÎ3l − ruG . s32d

An extensive comparison between the different potentials
has been given in Ref.[17] for the case where the particle
masses are equal and so here we wish to focus on the
changes to the potential due to changes in the relative masses
of the three particles.

A cross section of each of the potentials at a fixed value of
V is shown in Fig. 1 for the case where all particles have the
same mass. All of the potentials share a certain hexagonal
symmetry in that they are all smooth except along the lines

r = 0, s33d

r + Î3l = 0, s34d

r − Î3l = 0, s35d

which correspond toz1=z2, z1=z3, and z2=z3, respectively
(i.e., the potential is not differentiable when two particles are
coincident). This is true for all ratios of the masses of the
particles.

The Newtonian potential is a distorted hexagonal well
with sides that increase linearly withV. The hexagonal cross
section at any value ofVN only has equal length sides when
m1=m2=m3. Figure 2 shows various cross sections of the

FIG. 1. A cross section of the four potentials atV<1.3Mtotc
2 in

the case that all three particles have the same mass. N—solid, pN—
dashed, UpN—dotted, R—dash dotted.r and l are dimensionless
variables defined using the dimensionless positionsẑi of Eq. (38).

FIG. 2. Cross sections of the Newtonian potential atV
<1.3Mtotc

2 for various mass ratiosm1:m2:m3. Solid—1:1:1;
dashed—1:1:4; dotted—4:4:1; dash dotted—1:4:8.Note that all
discontinuities lie on one of the three bisectors(33)–(35) regardless
of the mass ratio.r andl are dimensionless variables as in Fig. 1.
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Newtonian potential at a fixed value ofV for different mass
ratios. We see that increasing the mass of particle 3 has the
effect of expanding the hexagon away from ther=0 bisector
while decreasing the mass contracts the hexagonal cross sec-
tion towardsr=0. Increasing and decreasing the mass of
particles 1 or 2 has the same effect but the deformation is
perpendicular to ther−Î3l=0 or r+Î3l=0, respectively.
When all three particles have unequal mass, the hexagon is
deformed as above with the magnitude of the deformation in
each direction given by the relative values of the mass.

The relativistic potential is similar to the Newtonian po-
tential except that the sides of the hexagon become concave.
Furthermore, for small values ofsr ,ld, the relativistic poten-
tial increases much more rapidly than the Newtonian poten-

tial. However, at a valueV̂R such that

lnS sV̂R − mjdfV̂R − sMtot − mjdg
sMtot − mjdmj

D
= V̂RF 1

sV̂R − mjd
+

1

fV̂R − sMtot − mjdg
G s36d

(for j =1,2, or 3), the slope of the relativistic potential be-
comes infinite, after which the size of the distorted hexagon
decreases likesln VRd /VR with increasingVR. In the equal

mass case this yields a valueV̂R<6.71197mc2, where m

=Mtot/3. Form=Mtot/2 we obtainV̂R<6.886 682mc2 which
is the maximal possible critical value of the potential, and in

the limitsm→0,Mtot we findV̂R→Mtot. A plot of the critical
values of the potential as a function ofmjis given in Fig. 3.

The overall shape of the relativistic potential is that of a
distorted, hexagonal carafe. The distortion of the relativistic
potential for different ratios of the particle masses is analo-
gous to the Newtonian potential and can be seen in Fig. 4.

The untransformed post-Newtonian potential shares simi-
lar features with the relativistic potential in that the sides of

the distorted hexagonal cross section are concave outward.
However, as one might expect, the potential increases less
rapidly than the relativistic potential but still more rapidly
than the Newtonian potential at small values ofsr ,ld. Fur-
thermore, the sides of the well continue to increase quadrati-
cally with increasingsr ,ld without the slope ever going to
infinity as in the relativistic case. Figure 5 shows a cross
section of the untransformed post-Newtonian potential at a
fixed value ofV for different mass ratios.

The transformed post-Newtonian potential has a much
different character than all of the potential energy functions
discussed so far. The sides of the distorted hexagon become
convex and the vertices are always coincident with the New-
tonian potential at a fixed value ofV. As V increases, the
sides become more convex with respect to the Newtonian
potential. Cross sections of this potential for different ratios
of the particle masses at a fixed value ofV can be seen in
Fig. 5.

Finally, we note that the potential energy does not com-
pletely govern the motion in the R and pN cases as it does in
the N case due to the momentum dependence ofV in the
former cases. Consequently, such comparison of the poten-
tials is limited in the insight it can provide.

IV. METHODS FOR SOLVING THE EQUATIONS
OF MOTION

The motion of the three particles under study is quite
complex so we have adopted several methods to study the
equations of motion. The most straight forward approach is
to look at the position of each particle with respect to the
center of massomaza as a function of time(where time will
be explicitly defined shortly). Recall, however, that the

FIG. 3. Critical values of the relativistic potentialVR as a func-
tion of a given particle mass in units ofMtot (here set equal to 3).
The maximum critical value occurs in the case whenmj =Mtot/2.
The minimal value approaches the limitVR.Mtot asmj →0 or Mtot.

FIG. 4. Cross sections of the relativistic potential atV
<1.3Mtotc

2 for different ratios of the particle masses. The corre-
spondence between line style and ratio is the same as in Fig. 2. The
deformation of the potential due to changing the mass ratio is the
same as in the Newtonian case. Ther and l are dimensionless
variables as in Fig. 1.
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choice of the center of mass reference frame is arbitrary and
is not necessarily stationary to an observer as it is in the
Newtonian case.

Under the change of coordinates(25) and(26), the motion
of the three particles is isomorphic to the motion of a single
particle moving in the hexagonal well potential(29) in the
Newtonian case. The situation is analogous in the fully rela-
tivistic and post-Newtonian cases except that the potentials
become momentum dependent. So, as in Refs.[17,5], we
focus on the trajectory of this particle, which we call the
“hex particle,” in ther-l plane as an alternate way to ana-
lyze the motion.

As mentioned before, the bisectors(33)–(36) correspond
to points where two of the particles are coincident. These
bisectors divide ther-l plane into six sextants corresponding
to the six different configurations the three particles can as-
sume. So, when the hex particle moves from one sextant to
the next, this corresponds to two particles passing through
each other. In the equal mass case, all six sextants are
equivalent, and in the unequal mass case, opposite sextants
correspond to the opposite configuration of particles[i.e.
s1,2,3d→ s3,2,1d]. Further symmetries exist when two par-
ticles have the same mass.

An analogous system was studied by Lehtihet and Miller
[2,21] who demonstrated that a self-gravitating Newtonian
system of three particles ins1+1d dimensionswith collisions
is equivalent to the motion of a particle in a uniform gravi-
tational field colliding elastically with a wedge. The exis-
tence of particle collisions in our study of the N system
would correspond to the hex particle being confined to a
single sextant where it would reduce to the particle-wedge
system. In this particle-wedge system, the equations of mo-
tion can be integrated between collisions of the particle with
the wedge and a discrete mapping describing the radial and
angular velocity of the particle at each collision can be used
to describe the motion. The simplification to a discrete map-
ping allows one to calculate fixed points in phase space and
evaluate their stability much more easily. Unfortunately, the
equations of motion for the pN and R systems are much

more complex than in the Newtonian case and it is not clear
how to create a discrete mapping between particle collisions.

Following Refs.[2,17] we define two types of motion:A
motion, where two particles cross twice in succession; andB
motion, where a single particle crosses each of the other two
in succession. Insr ,ld space, after the hex particle has just
crossed one of the bisectors,A motion would correspond to a
crossing of the same bisector whileB motion would corre-
spond to it crossing a different bisector. In this way, one can
describe the trajectory of the hex particle as a succession of
A and B motions and develop a “symbol sequence” for a
given trajectory. To simplify the notation, we use exponents
to denote a number of repeats of a given type of motion so
that the symbol sequence takes the formpi,j ,k sAmiBnjdlk,
wherelk,mi ,nj PZ+ and lk is possibly infinite, in which case
we denote it by an overbar[i.e., limc→`sAaBbdc;AaBb].
Since the type of hex-particle motion at a given bisector
depends on the previous bisector, we avoid ambiguity by
saying that the first bisector crossing of the hex particle is
undefined, and the symbol sequence begins at the second
crossing. To aid in understanding this nomenclature we have
listed the symbol sequence in the captions of all configura-
tion space trajectories where the trajectory is easy to follow.

The above methods allow us to study and classify indi-
vidual trajectories of the hex particle in the four dimensional
sr ,l ,pr ,pld phase space. In order to study some of the glo-
bal structure of this phase space, we construct Poincaré
maps. Since all of the Hamiltonians under study are time
independent, the total energy of the system is a constant of
motion and so the motion at a given energy is confined to a
three-dimensional hypersurface in phase space. We can fur-
ther reduce this to two dimensions by plotting the radial
momentumpR and the square of the angular momentumpu

2

of the hex particle each time it crosses one of the bisectors,
as in Refs.[2,17]. This is known as the surface of section or
Poincaré map.

In the equal mass case, all bisectors are equivalent and so
pR andpu

2 at each bisector can be plotted on the same surface
of section, as in Refs.[17]. When the masses are unequal,

FIG. 5. Cross sections of both the untransformed(left) and transformed post-Newtonian potentials atV<1.3Mtotc
2 for various mass

ratios. The correspondence between ratio and line is the same as in Fig. 2. Ther andl are dimensionless variables as in Fig. 1.
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this procedure is not possible and one must distinguish be-
tween the different bisectors and the directions in which they
cross. We have chosen to plot points on the Poincaré map
each time the hex particle crosses ther=0 boundary in the
positive angular direction(i.e., when pu.0). In the case
whenm1=m2, particles 1 and 2 are indistinguishable and we
may also plotspR,pu

2d each time the hex particle crosses the
r=0 bisector in the negative angular directionspu,0d. Due
to the nature of the Hamiltonian phase space, the different
surfaces of section corresponding to the different bisectors
and directions contain the same information and no general-
ity is lost in making the above choice.

Since we were unable to find a closed form solution to
either the relativistic determining equation(12) or the equa-
tions of motion(16) and (17), it was necessary to employ
numerical techniques to study the motion. Using aMATLAB

integration routine(ode15s) we were able to solve the equa-
tions of motion in the N, pN, and R systems.

The ode15s routine uses a variable order method for solv-
ing stiff differential equations[23]. In order to control com-
putational errors, we imposed absolute and relative error tol-
erances in the numerical routine ofeabs=erel=10−8 so that the
estimated error in each of the dynamical variables
rsid ,lsid ,prsid, andplsid at each stepi in the numerical in-
tegration is

esid ø maxfereluysidu,eabsg, s37d

where ysid represents a generic, dimensionless dynamical
variable at time stepi. These dimensionless variables will be
introduced shortly.

Furthermore, we periodically checked that the total en-
ergy of the system remained constant to ensure that the so-
lution was stable and physically correct.

We found (both in this study and in Ref.[17]) that the
numerical precision available to the computer did not allow
the integration routine to solve the equations at energies ap-
proximatelyHù2Mtotc

2. We were unable to find a numerical
integration routine that could integrate the equations of mo-
tion in this energy regime so the dynamics of the system at
high energies still remains an open problem.

Furthermore, when we integrate the pN equations of mo-
tion, we find that the resulting energy of the numerical solu-
tion does not remain constant in time, despite the fact that
the Hamiltonian(24) describes a conservative system. The
variation in energy becomes greater as the differences be-
tween the masses increases. For the case when all masses are
equal, this variation is on the order of the imposed numerical
error tolerances and can be ignored. A description of the
dynamics of the pN system in the equal mass case is given in
Ref. [17]. The variation in energy increases drastically when
we change the ratio of the masses even by a small amount.
For example, when we integrate the equations of motion in
the case where the mass of one particle is half that of the
other two, we see a variation in the total energy on the order
of 10−2Mtotc

2 over the duration of the trajectory. The cause
of this energy variation is unclear but its magnitude is clearly
too large to ignore. Due to this energy fluctuation, the nu-
merical solutions to the post-Newtonian equations of motion

that we obtained in the unequal mass case are clearly un-
physical and will not be presented in this paper.

We cast the expressions for the Hamiltonian and the equa-
tions of motion in the different systems in a dimensionless
form using the coordinatesẑi and p̂i, given by

zi =
4

kMtotc
2ẑi , s38d

pi = Mtotcp̂i . s39d

We then express the dimensionless Hamiltonian as

h =
H

Mtotc
2 − 1, s40d

so thath=0 corresponds toH being equal to the total rest
mass of the system. The total dimensionless energy for all
systems ish+1 (recall that we are assuming the Newtonian
Hamiltonian has been rescaled so that the zero point is the
total rest energy of the system). In this way, a single value of
h corresponds to the same energy in all three systems.

The equations of motion then become

] h

] p̂i

=
1

c

] H

] pi
=

4

kMtotc
3

dẑi

dt
=

dẑi

dt̂
, s41d

] h

] ẑi

=
4

kMtot
2 c4

] H

] zi
= −

4

kMtotc
3

dp̂i

dt
= −

dp̂i

dt̂
, s42d

where we recognizet̂ as the dimensionless time unit, given
as

t =
4

kMtotc
3 t̂. s43d

We refer to t̂=1 as one time step.r̂, l̂, p̂r, and p̂l, the di-
mensionless counterparts ofr, l, pr, andpl respectively, are
defined as in Eqs.(25) and(26) using the hatted variables of
Eqs.(38) and(39). In the subsequent analysis, dimensionless
variables will be assumed unless otherwise stated.

V. SOLUTION TO THE EQUATIONS OF MOTION

In this section we present the results of our numerical
analysis of the equations of motion. In Sec. V A we summa-
rize the equal mass results of[17] then go on to present how
the dynamics change in the unequal mass case in Secs. V B
and V C.

A. Equal mass solution

The study of the N, pN, and R systems when all three
particles share the same mass revealed a large variety of
different types of trajectories. The different types of motion
can be classified into three broad categories which we call
annulus, pretzel, and chaotic. Note that our naming scheme
is not standard in the literature of dynamical systems. Our
nomenclature was chosen because of its direct physical in-
terpretation in terms of the three particles(despite the fact
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that the terms annulus and pretzel derive from the shape of
the trajectories in ther−l plane).

Annulus trajectories correspond to the hex particle never
crossing the same bisector twice in a row resulting in an orbit
about the origin of thesr ,ld plane. The symbol sequence for

all annulus orbits isB̄. In terms of particles, these trajectories
represent all motions in which no two particles cross succes-
sively. Most of the trajectories in this class never exactly
repeat themselves after any number of orbits about the ori-
gin. The result is a densely filled region of thesr ,ld plane
circling the origin. All of these trajectories form closed loops
on a Poincaré map.

Pretzel trajectories are so named because of the complex
patterns they make when plotted insr ,ld coordinates. Sym-
bolically, these trajectories fall into two distinct classes:(1)
regular trajectories, which are denoted by some repeating
pattern ofA’s andB’s (e.g.,A2B12A5B3) and(2) quasiregular
trajectories, represented by some repeating pattern ofA’s and
B’s with extraA motions occasionally occurring on each rep-
etition of the pattern[e.g.,A3sA2B6d3A2sA2B6d11. . .]. As in the
annulus case, most pretzel trajectories never exactly repeat
themselves and densely fill a region of phase space. Pretzel
trajectories appear either as a series of small enclosed loops
or as a series of disconnected lines on a Poincaré map.

Chaotic trajectories are those that eventually cover all al-
lowed regions of phase space and are denoted symbolically
by an apparently random sequence ofA’s and B’s. Since
chaotic trajectories erratically cover a large region of phase
space, they appear as densely filled regions on a Poincaré
map. In all three systems there is a region of chaos separating
the annulus and pretzel regions on the surface of section
[17].

A comparison between the relativistic and Newtonian sys-
tems reveals differences in the trajectories ash increases. In
general, the particles in the relativistic system cross each
other at a higher frequency than in the Newtonian case for
the same value ofh. The structure of the relativistic Poincaré
maps at all energies attainable were similar to the Newtonian
ones except for a shifting of all trajectories to one side. Re-
markably, this structure remained stable up to the values ofh
that were attainable despite the high degree of nonlinearity in
the equations of motion.

Furthermore, for all trajectories studied in all three sys-
tems,B motion always occurred in multiples of 3[17]. That
is, all symbol sequences were of the formpi,j ,k sAmiB3njdlk so
that any time a single particle, say particle 1, crossed the
other two in succession, particles 2 and 3 always crossed
next before meeting particle 1 again.

B. Unequal mass trajectories

In order to study the effects of changing the relative
masses of the particles, we adopt the parametera whenever
two masses are equal so thatm1=m2=am3. When all three
masses are unequal, we will describe the relative masses as a
ratio (i.e., m1:m2:m3=1:2:3).

In the case when two masses are equalsaÞ1d, we find
the same diversity of trajectories in thesr ,ld plane as in the
a=1 case[17]. Figure 6 shows this diversity for different

values ofa in the N system while Fig. 7 and 8 show ex-
amples of annulus and pretzel trajectories, respectively, for
the R system. Similar trajectories are obtained when all three
masses are unequal.

In terms of the hex particle moving in ther-l plane, we
did not find a significant difference between the equal and
unequal mass trajectories besides a general distortion of the
annulus orbits as the difference in masses increases. For in-
stance, in the equal mass case[17], all of the annulus orbits
were generally hexagonal about the origin. When the mass of
one particle is larger than the rest, these annuli take on a
more boxlike shape, as can be seen in Fig. 7. Besides a
general distortion, we did not find any novel types of motion
that were not seen in the equal mass case. Since the qualita-

FIG. 6. Examples of trajectories in the N system for different
values ofh anda. Each trajectory was run for 150 time steps. The
small box indicates the starting position of the trajectory. Proceed-

ing clockwise from the top left plot the symbol sequences areB̄, B̄,
AB3A2B3, andB6AB9A.

FIG. 7. Examples of relativistic annulus trajectories for different
values ofh and a. Note the characteristic boxy shape at higher
values ofa. Each trajectory was run for 200 time steps. All trajec-

tories have the symbol sequenceB̄.
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tive aspects of the motion in ther-l plane do not reveal
much about the underlying physics, we will forgo any further
discussion on this matter.

Another effect of changing the difference between the
particle masses is that the ratio between the number of an-
nulus trajectories compared to the number of pretzel orbits at
a given energy decreases. That is, asa decreases, we find
fewer and fewer initial conditions that give annuli compared
to initial conditions that produce pretzels. The reason for this
is best demonstrated by looking at the motion of the particles
as a function of time.

Figure 9 plots the relative motion of the particles for de-
creasing values ofa in the R system for a specific set of
initial conditions. We see that, at equal masssa=1d, a single
particle alternately crosses the other two without ever cross-
ing the same particle twice, indicative of annulus motion.
However, asa decreases, the mass of particle 3 decreases
and so its frequency of oscillation decreases while its ampli-
tude increases with respect to the other two.

In effect, we see that the two massive particles gravita-
tionally bind together more tightly as the difference between
their mass and the mass of the third particle increases. Even-
tually, this binding becomes so tight that the two massive
particles are forced to execute an additionalA motion before
crossing the third particle and, hence, there is a transition
from annulus type motion to pretzel type motion. This be-
havior, while expected for the Newtonian system(Fig. 10), is
also present in the relativistic case.

As the mass difference increases, it is much more difficult
to set up initial conditions at a given energy such that particle
1 and 2 do not cross more than once during one of particle
3’s long period oscillations. This effect is also seen in the
Newtonian system, as shown in Fig. 10. This difference in
the ratio of the number of annulus trajectories compared to
pretzel trajectories will be made more clear in the following
section when we look at the Poincaré maps.

Using these position-time plots, it is interesting to explore
the limit where one mass is much greater and much smaller
than the other two(a@1 and a!1, respectively). The

former case is shown in Fig. 11 for the N and R systems
wherea=100. In both cases, as one would expect, we see
the large mass barely moves while the other two particles
oscillate about it. The inset shows the small perturbations to
the motion of the larger mass caused by the passing of the
two particles. In the Newtonian case, the perturbation is very
smooth and regular while the perturbation in the relativistic
case is more jerky and erratic. That is, the velocity of the

FIG. 8. Examples of relativistic pretzel trajectories for different
values ofh anda. Each trajectory was run for 200 time steps. The
top right plot has symbol sequenceA2B3.

FIG. 9. The relative position of each particle with respect to the
center of mass is plotted as a function of time for various values of
a in the R system. The particles 1, 2, and 3 have relative masses in
the ratio1:1:a. Solid line—particle 1, dotted line—particle 2, and
dashed line—particle 3. Each plot uses the same initial values of
sr ,l ,pr ,pld but the total energyh+1 is fixed by the energy con-

straint(12). The top two plots display annulus motionsB̄d while the
bottom two are classified as pretzel trajectories[sB6Ad7B3 and
A2B3sAB3d5, respectively].

FIG. 10. The relative positions of each particle with respect to
the center of mass as a function of time in the N system. These plots
were created using the same procedure as in Fig. 9 and follow the
same conventions except that Eq.(20) is used to fix the value of the

total energyh. The first is an annulus trajectorysB̄d while the re-
maining are pretzels[B9A, sB3A2d4B3A3, andsB3A5d2B3A4 from top
to bottom].
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large mass in the R system increases much more suddenly
than in the N system when it encounters another smaller
mass.

Figure 12 shows the corresponding plots whena=0.01.
We see that, in both cases, the two heavy particles form a
stable, two-body subsystem while the third particle oscillates
about their center of mass. As seen in the upper most insets
in both the R and N case, the presence of the light particle
has a weak gravitational effect, causing the oscillatory mo-
tion of the center of mass of the two more massive particles.
Unlike the effect seen in Fig. 11, the perturbation of the
motion of the heavy particles due to the crossing of the light
particle is very small in the R system and almost impercep-

tible in the N system. The reason for this is that the two
heavy particles in thea=0.01 case are twice as massive as
the single particle in thea=100 and so the motion of the
two-body subsystem is much more stable and less suscep-
tible to harassment from the weaker mass. However, the
qualitative nature of the perturbation remains the same as in
the a=100 case.

We also find that the amplitude of oscillations in the New-
tonian system is generally larger than in the relativistic sys-
tem at corresponding values of the total energy and that the
frequency of oscillations is greater in the relativistic case.
These observations agree with the results found in the equal
mass case[17].

Finally, we note that, as in the equal mass case, we find
thatB motion always comes in multiples of three. That is, the
symbol sequence always takes the form

p
i,j ,k

sAmi,B3njdlk, s44d

for all values ofa andh that were studied. This extends our
hypothesis proposed in Ref.[17] that all trajectories in the R
and N systems, when translated into a symbol sequence,
have the form(44), to also hold for all mass ratios of the
three particles.

C. Global structure of phase space

By studying the two-dimensional representations of phase
space represented in the Poincaré maps we were able to dis-
cover some interesting global properties of both the N and R
systems. We begin this section by describing some of the
basic features of the Poincaré plots and then go on to discuss
how the structure of phase space changes when the mass
ratio of the particles is changed. Our results will then be
compared with similar studies conducted previously.

An example of a Poincaré map for the N system when all
masses are equal is shown in Fig. 13. All points on this
surface of section fall within a parabolic region which is

FIG. 11. Relative motion of the particles with respect to the
center of mass plotted as a function of time for the R system(top)
and the N system(bottom). Both plots have mass ratios1:1:100 or
a=100. The lines are as defined in Fig. 9. The insets show the small
perturbation in the motion of the large mass due to the crossing of
the smaller masses.

FIG. 12. Relative motion of the particles for the case where the
mass ratio is1:1:0.01 ora=0.01 for both the R(top) and N
(bottom) systems. The insets show the motion of the stable, two
body subsystem made up of the two heavy particles, as well as the
effect of encounters with the light particle.

FIG. 13. A Poincaré map of the Newtonian system when all of
the particle masses are equal.
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defined by the system’s energy constraint. It was found in
Ref. [17], as mentioned previously, that the three types of
motion, annulus, pretzel, and chaotic, fall into three regions
on the surface of section. Quasiperiodic annulus orbits form
single closed loops about a stable fixed point at which the
motion is completely periodic. In Fig. 13 this region of qua-
siperiodic annuli is located at the center of the plot enclosed
within the densely filled triangular shaped region. This
densely filled region is created by chaotic trajectories and
separates the annulus region from the pretzel region. All
pretzel trajectories fall outside of this chaotic region and
form either a series of disconnected loops or a series of dis-
connected lines.

A similar segregation of the surface of section is also seen
in the R system, an example of which is shown in Fig. 14.
The relativistic Poincaré map is strikingly similar to the
Newtonian one in Fig. 13. The annulus region is shown as

the series of closed loops in the lower right portion, sur-
rounded by the warped chaotic region, which is further sur-
rounded by the region of pretzel trajectories.

In general, the relativistic phase space is a warping of the
corresponding Newtonian space. As described in Ref.[17],
this is due to the weaker symmetry of the relativistic Hamil-
tonian compared to the Newtonian. As seen in Eq.(20), the
N system is invariant under the symmetrypi →−pi and this is
manifest in the symmetry about thepR=0 axis in Fig. 13.
The relativistic Hamiltonian, determined by Eq.(12), is in-
variant under the symmetryspi ,ed→ s−pi ,−ed. Contrary to
the Newtonian case, this relativistic symmetry is not mani-
fest in our surface of section.

We find that the annulus and pretzel trajectories continue
to fall into similar regions, as described above, for all differ-
ent mass ratios studied, and that these two regions are always
separated by a region of chaos. By changing the mass ratio at
a given value of the total energy, the size and shape of the
different regions change.

More specifically, by looking at the case where particles 1
and 2 share the same mass, the annulus region becomes
smaller and moves towards the top of the allowed region of
the surface of section with decreasinga,1 as can be seen in
Fig. 15 fora=0.1 in both the N and R systems. This shrink-
ing of the annulus region is a manifestation of the effect
discussed in Sec. V B where annulus motion becomes more
difficult to attain when one particle is significantly less mas-
sive than the other two.

As a increases, the annulus region extends towards the
lower region of the plot, as shown in Fig. 16 fora=10 in
both the R and N systems. Essentially, this means that one
requires a lower magnitude of angular momentum of the hex
particle to attain an annulus orbit in ther-l plane. Since the
gravitational attraction between the two light particles is not
very strong compared to their interaction with the heavy par-
ticle, the light particles do not tend to oscillate about each
other very much but instead act like two separate two body
systems with the heavy particle taking the role of the second
body, like a two-planet, one-dimensional solar system. This
situation is shown in Fig. 11 fora=100 and explains why

FIG. 14. A Poincaré map of the relativistic system when the
masses of all of the particles are equal.

FIG. 15. Poincaré plots witha=0.1 for the Newtonian(left) and relativistic(right) systems. The insets on the right show the onset of
chaos in the pretzel region.
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there is no decrease in size of the annulus region with in-
creasinga.

The symmetry aboutpR=0 present in Figs. 15 and 16 is
really just an artifact of our choice of surface of section.
Recall that we chose to construct our Poincaré maps by plot-
ting a point each time the hex particle crossed ther=0 bi-
sector, or, equivalently, each time particles 1 and 2 crossed.
The above figures were constructed withm1=m2 and so the
symmetries of the equal mass system persist. If we were to
have chosen a different bisector, all of the features discussed
above would remain(e.g., shrinking, expanding of annulus
region) but these would not occur in the same sense and the
plots would not be as symmetrical.

This can be shown by creating Poincaré maps for the case
when all three masses are unequal. An example for both the
R and N system is shown in Fig. 17 where the mass ratio is
m1:m2:m3=1:5:10. Here we see that the symmetry about

the pR=0 axis no longer exists in the Newtonian system due
to the fact that none of the particles have equal mass. We also
see a further warping of the relativistic plots due to this
added asymmetry. Furthermore, we find that the different
regions are not as clearly segregated as in them1=m2 phase
space but extend over more of the Poincaré map. For in-
stance, in the relativistic map of Fig. 17 we see that the
chaotic region separating the annulus and pretzel trajectories
[marked by(1)] is no longer a single, densely filled loop but
actually two loops which were created by a single trajectory.
The annulus region is confined to the area inside both of
these loops, where a single annulus trajectory will visit both
regions.

Besides this novel partitioning of the different regions, the
changes to the structure of the phase space for different ratios
of the mass when all three masses are unequal are analogous
to the results described above for the case wherem1=m2. For

FIG. 17. Poincaré plots with a mass ratio of1:5:10 for the Newtonian (left) and relativistic(right) systems. On the left,(a) marks the
region of chaos separating annulus trajectories(inside) and predominantly pretzel trajectories(outside) while the densely filled area directly
above and below(b) marks a new region of chaos amongst the pretzel trajectories. On the right, the densely filled regions marked by a(1)
were created by a single trajectory separating the annulus and pretzel orbits while the chaotic regions marked by(2) were created by a
trajectory within the pretzel region.

FIG. 16. Poincaré plots witha=10 for the Newtonian(left) and relativistic(right) systems. The insets show additional regions of chaos
in the pretzel region that are not present in the corresponding region on the equal mass Poincare section.
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example, the ratio 1:5:10 exhibits similar behavior as the
case when there is one light particle and two heavy ones,
only the effects are not as prevalent because of the interme-
diate mass particle. The results can be seen as an interpola-
tion between the 1:1:1 case and the 1:10:10 case.

One major difference that we find between the equal and
unequal mass cases is the presence of additional chaotic re-
gions in the unequal mass space that are not present in the
corresponding constant energy hypersurface of the equal
mass space. This is true for both the Newtonian and relativ-
istic systems. For the mass ratios and energy levels that we
have studied, these additional chaotic regions appear within
the pretzel regions of the corresponding equal mass surface
of section. The novel chaotic trajectories are characterized by
broadened lines in the pretzel region as can be seen in Figs.
15–17. The exact physical mechanism that gives rise to this
increase in chaos is not presently known.

Note that, although there are no apparent regions of chaos
in the Newtonian,a=0.1 Poincaré map of Fig. 15(besides
the one separating the annuli from the pretzels), we do find a
slight broadening of lines in the other two Poincaré maps
constructed by plotting points each time the hex particle
crosses the other two bisectors, respectively.

That is, additional regions of chaos do form in the un-
equal mass phase space but these new regions cannot be seen
on the particular choice of Poincaré section shown in Fig. 15.
We suspect that these new regions of chaos would become
more prevalent as the difference in particle masses increases.

It is instructive to compare our results with a similar study
of a billiard in R2 colliding with a wedge in a uniform(New-
tonian) gravitational field performed by Lehtihet and Miller
(referred to as LM herein) [2]. LM showed that the two-
dimensional wedge billiard system is isomorphic to a system
of three elastically colliding, self-gravitating particles(under
Newtonian gravity) in one-dimension, with the relative
masses of the particles directly related to the wedge angle by

tan u =
Î1 + 2a−2

1 + 2a−1 , s45d

wherea is as defined in our study. LM only considered the
situations where the wedge is symmetric, which corresponds
to the case when two of the three masses are the same. The
value of u=p /6 corresponds toa=1, the equal mass case.
This connection between particle masses and the wedge
angle agrees with the distortion of the potential energy de-
scribed in Sec. III where the angle of the wedge is related to
the angle between the bisectors of the hexagonal well.

The only difference between the LM system and our N
system is the existence of collisions in the former while the
particles pass through each other in the latter. For the case
where all three particles are identical, it is irrelevant whether
one considers that the particles are colliding or passing
through each other(besides the question of labeling the par-
ticles). For this reason, the phase space structure of the New-
tonian equal mass configuration, as presented in the Poincaré

maps, is identical between our system and the wedge-billiard
system.

LM found that this wedge-billiard system exhibits the
characteristics of a conservative Hamiltonian system with
two degrees of freedom and a discontinuity. By changing the
value of a single continuous parameteru they found a variety
of dynamics similar to our study. More specifically, for
u,p /4 (which corresponds to the entire range of physical
values ofa) they found that integrable, near integrable, and
chaotic regions coexisted in phase space. Furthermore, as the
wedge angle was increased fromp /6 [corresponding to both
an increaseor a decrease ofa due to the nature of the con-
nection between mass ratio and wedge angle(45)], they
found that the region surrounding periodic fixed points was
consumed by regions of simply connected chaos which in-
creased in size with increasing wedge angle.

As noted above, we find a similar behavior in both our
Newtonian and relativistic systems in that we see an increase
in the amount of chaos as the difference in the masses in-
creases. However, we have only studied moderate particle
mass differences in order to characterize the general nature
of the unequal mass system and it is not clear how the global
structure of our system will behave for very large differences
in the particle masses. In particular, we do not know if our
systems will experience a global transition to chaos or if
there exists integrable and near integrable regions for all
mass ratios. This remains an area for further study.

VI. DISCUSSION

We have presented the results of a continued study of the
three-body problem in lineal gravity begun in Refs.[16,17].
The focus of the present investigation was to see what hap-
pens to the motion of the particles when the relative masses
of each are not equal. Here we summarize our results.

The derivation of the three-body Hamiltonian by canoni-
cal reduction of the action(1) was summarized and the as-
sociated post-Newtonian and Newtonian Hamiltonians pre-
sented. Each Hamiltonian possesses two spatial degrees of
freedom with two conjugate momentum degrees of freedom
and these were made manifest by changing tosr ,ld coordi-
nates. Expressions for the potential energy of each system
were derived and the distortion of the potential energy due to
varying the mass ratio was described.

The results of the study of the equal mass case were sum-
marized and the different types of motion were classified into
three categories: annulus, where each particle always crosses
the other two in succession; pretzel, in which two particles
can cross each other twice in a row; and chaotic, where the
sequence of particles crossings does not progress in a dis-
cernible pattern. By studying the motion of the three par-
ticles and their corresponding hex-particle representation in
ther-l plane, we characterized how changing the mass ratio
of the particles effects the dynamics of the system. More
specifically, we described in physical terms how the type of
motion (annulus, pretzel, and chaotic) and their relative
abundance in phase space changes with respect to the mass
ratio.
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As the relative difference between the masses of the par-
ticles increases, we find the onset of additional regions in
phase space of chaos that are not present in the equal mass
system—in other words, we find that motion that was once
quasiperiodic is now chaotic. This shows that the unequal
mass phase space is not simply a deformation of the corre-
sponding equal mass space but, indeed, contains novel dy-
namics. The physical mechanism behind this phenomenon is
currently unknown.

This is similar to the behavior of a billiard colliding with
a wedge(which is isomorphic to three particles elastically
colliding on a line under their mutual, Newtonian attraction)
studied by Lehtihet and Miller[2]. It is still not known what
happens to these novel regions of chaos as the difference in
mass gets exceedingly large.

There are still many open areas of study in the lineal,
three-body problem. As was done in the two-body problem
[8–11] it will be interesting to see the effect of adding charge
to the particles and a cosmological constant to the system.
Furthermore, more sophisticated numerical techniques need

to be introduced in order to probe the dynamics of the system
at high energies and in order to study the motion in the
post-Newtonian system for unequal mass particles. A de-
scription of the global structure of phase space for extreme
differences in the particle masses is still needed in order to
determine the stability of the system in these limiting cases.
As mentioned above, a discrete map between particle cross-
ings in the N and R systems(although it is doubtful whether
this can be obtained for the latter) may illuminate some of
the more general features of the three-body system. The de-
velopment of a relativistic three-body system where the par-
ticles elastically collide instead of passing through each other
would also be an interesting subject to study to see if the
increased chaos reported in Ref.[2] has an analog in the
relativistic system.
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